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An experimental and theoretical investigation has been conducted to  determine the 
stability and disturbance-amplification characteristics of the combined forced and 
free convection flow adjacent to a vertical uniform-heat-flux surface in a uniform free 
stream. Previous studies of the stability of mixed convection flows have been limited 
to linear stability analysis of the effect of weak buoyancy on the neutral stability 
of a stronger forced flow. Here we consider circumstances where forced-convection 
effects are small compared with buoyancy effects. The flow behaviour is analysed 
using linear stability theory. The analysis incorporates a new formulation which 
permits the calculation of amplification contours for a given flow circumstance. The 
governing equations have been solved numerically to generate stability planes 
including the neutral curve and constant amplification contours. Stability planes are 
presented for assisting and opposed flows at Prandtl numbers Pr of 0.733 and 6.7. 
In  air (Pr = 0-733), the presence of a weak free stream is found to cause the 
disturbance-amplification rates and the filtered frequency to deviate strongly from 
those found in purely free-convection flow. In  water (Pr = 6.7), the effect of a free 
stream is much weaker. I n  addition, hot-wire and thermocouple measurements of the 
filtered frequencies and the disturbance-amplitude distributions are presented for 
aiding mixed convection flow in air. The measurements are found to be in very good 
agreement with the calculated results of the stability analysis. 

1. Introduction 
As a consequence of the many studies of transition mechanisms conducted over 

the past several decades, i t  is now generally accepted that transition to turbulence 
in many boundary-layer flows is a consequence of the amplification of initially small 
disturbances. For both forced-flow boundary layers and vertical natural convection 
boundary layers, abundant experimental evidence is available which indicates that 
in the early stages of transition small disturbances may amplify in two-dimensional 
sinusoidal form. These then initiate a train of events which ultimately convert a 
laminar flow to turbulence. 

Linear stability theory has been the principal tool used to analyse the early stages 
of instability and disturbance growth in both forced-flow boundary layers and in 
natural convection boundary-layer flows. For natural convection boundary-layer 
flows near an isothermal or uniform-heat-flux surface, linear stability theory predicts 
that  a certain narrow band of frequencies will be highly amplified as the disturbances 
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are convected downstream. Studies by Jaluria & Gebhart (1974), Mahajan & Gebhart 
( 1978) and others have experimentally confirmed that the filtered frequency predicted 
by linear stability theory also remains dominent during the early stages of transition. 
I n  contrast, this type of frequency filtering is not predicted to  occur in Blasius flow. 
Instead, linear theory predicts that  all disturbances below a certain frequency level 
will first amplify and then decay. Lower frequencies begin to  amplify farther 
downstream and amplify more ; but they, like higher frequencies, are predicted 
eventually to decay. A discussion of Blasius flow stability is found in Jordinson (1970). 
Hence, in Blasius flow the disturbance-amplification characteristics are quite different 
from those in vertical natural convection boundary-layer flows. 

Since small disturbances are found to amplify initially in two-dimensional sinusoidal 
form in both Blasius flow and in vertical natural convection boundary-layer flows, 
mixed convection flows along vertical flat surfaces may be expected to have the same 
characteristics. For assisting mixed convection flows over a vertical surface, Merkin 
(1969) points out that  near the leading edge the flow is mainly forced convection since 
thermal transport is not yet established. At large downstream distances, the flow 
behaviour approaches that of purely natural convection flow. Based on these 
surmises, if the free-stream flow is vigorous enough to be unstable near the leading 
edge, i t  is expected that the stability and disturbance-growth characteristics of the 
flow will resemble those of Blasius flow. If, on the other hand, the free-stream velocity 
is small, the flow will become unstable further downstream, where its disturbance- 
amplification behaviour should resemble that of natural convection flow. Hence the 
stability and disturbance-amplification characteristics of these flows may, in general, 
depend on the relative importance of buoyancy and free-stream effects. 

Laminar mixed convection flows over vertical surfaces commonly occur in the 
environment and in technical applications. Numerous studies of such flows have 
appeared in the literature. A brief discussion of past investigations of laminar mixed 
convection flows over vertical flat surfaces may be found in Carey & Gebhart (1981). 
Past studies of the stability characteristics of such flows are very sparse. Mucoglu 
& Chen (1978) have used linear stability theory to analyse the wave instability of 
mixed convection flow over a vertical isothermal surface. Conditions near the leading 
edge are considered, where buoyancy effects are small compared with forced-flow 
effects. The base flow was computed using the local non-similarity method. I n  the 
stability analysis, the local non-similarity method was used to include the non-parallel 
effects of the base flow. Neutral-stability curves are presented for a range of the 
buoyancy parameter GrJRe;. Both aiding and opposed effects are analysed for values 
of the Prandtl number of0.7 and 7.0. For aiding flow i t  was found that increasing 
buoyancy stabilizes the flow, while for opposed flow increasing buoyancy has a 
destabilizing effect. 

With these results, i t  is difficult, for a given flow circumstance, with given values 
of free-stream velocity, surface temperature and ambient temperature, to extract the 
x-location of initial instability. This arises because the neutral-stability curves were 
computed for fixed values of Gr,.Rei, which is an  x-dependent parameter. The 
formulation used here circumvents this difficulty. 

I n  more recent studies, Chen & Mucoglu (1979) and Chen & Moutsoglou (1979) have 
analysed the wave instability of mixed convection flow over horizontal and inclined 
surfaces respectively. Both these studies also consider mixed convection flows in 
which the buoyancy effects are small compared with forced-flow effects. I n  both 
studies neutral stability curves are presented for both aiding and opposed buoyancy 
effects. 
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The present analytical and experimental results apply to mixed convection flows 
in which the effect of the free-stream velocity is small compared with the effect of 
buoyancy. Linear analysis is used to determine the stability and disturbance- 
amplification behaviour of mixed convection boundary-layer flow adjacent to a 
vertical uniform-heat-flux surface. For the relatively small free-stream effects 
considered here, these flows were found to retain the selective frequency amplification 
which is characteristic of pure natural convection flows. The experimental measure- 
ments of naturally arising disturbance frequencies and disturbance-amplitude 
profiles support the analytical results. 

2. Analysis 
The analysis concerns combined forced and natural convection flow adjacent to 

a vertical uniform-heat-flux surface. The free-stream velocity is assumed to be 
constant and sufficiently small that near the conditions of first instability it only 
slightly alters the flow from its purely natural convection behaviour. The present 
analysis neglects variable-property effects and the viscous dissipation and pressure 
terms in the energy equation. It incorporates the usual Boussinesq and boundary-layer 
approximations. With these assumptions, the governing equations for the steady base 
flow are 

alL av 
ax a y  -+- = 0, 

au au a Z u  
u-++J-=gSpt(t-ttoo)+v- ax a y  a y 2 ’  

at at a 2 t  

ax ay a y 2 ’  
u -+v - = a,- (3) 

where x is the distance measured vertically upward from the lower edge of the plate, 
y is the coordinate normal to the surface, t is the temperature and u and v are the 
vklocities in the x- and y-directions respectively. Here g is the acceleration due to 
gravity, Spt is the coefficient of thermal expansion, v is the kinematic viscosity and 
at is the thermal diffusivity. The boundary conditions for the base flow are 

(5) u=u,, t = t ,  a t  y-*co, 

where q is the surface heat flux, k is the fluid thermal conductivity, and t ,  and u, 
are the ambient temperature and free-stream velocity respectively. The characteristic 
speed 11, length S, and temperature difference AT are defined as 

5x qS S = -, AT = -, 
V G * ~  

[ T  = - 
5x ’ G* k 

where G* is related to the Grashof number Gr,* as 

7 
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The base flow is non-similar. The non-dimensional stream and temperature functions 
F and H are therefore defined as 

where 7 = y/S is the normalized y-coordinate, and by definition u = $u and v = - @.,. 
As shown by Carey & Gebhart (1981), it is possible to obtain expansions for F(x, 7) 

and H(x, 7) for large downstream distances. Consistent with the parallel-flow and 
boundary-layer assumptions which will be used in the stability analysis, only the first 
two terms of these expansions are retained here: 

where 

Note that increasing the expansion parameter eM corresponds to increasing forced 
convection effects. For use in the stability analysis, eM is written as 

EM = R * / G * ~ ,  (1la) 
where 

All the x-dependence of EM is then contained in the G*f factor in (1 1 a) .  The parameter 
R* is a constant for a given flow circumstance. Its magnitude is dependent on the 
free-stream velocity, the surface heat flux and the properties of the fluid. For a given 
flow circumstance, increasing downstream distance x corresponds to increasing G* 
and decreasing eM. The parameter R* is an indicator of the importance of forced-flow 
effects on the flow as a whole, while G*a in (1 1 a) quantifies the variation of forced-flow 
effects with downstream distance. 

Substituting (7) and (8) into (1)-(5), with (9)-(1 l), yields the following equations 
and boundary conditions for the base-flow quantities : 

l$”+4F,F,”-3Fi2+Ho = 0, (124  

H,”+Pr(4F,H;-FLH0) = 0, (12b) 

(W F , ( O )  = FL(0) = Hi(O)+ 1 = Fi(00) = H,(W) = 0, 

Fy + Fl F,” + 4F0F:- 3FiF; + Hl = 0, 

H: + Pr(FIH; + 4F, Hi + 2H1 Fi - Fi H,) = 0, 

e(0) = Fi(0) = Hi(0) = F i ( ~ ) - i  = H1(m) = 0. 

(13b) 

(134 
In the usual manner for stability analysis, the velocity, temperature and pressure 

are each assumed to be the sum of a mean and fluctuating component, here designated 
as barred and primed quantities respectively : 

u = a+u’, v = B + v ’ ,  t = t+t ‘ ,  p = p + p f .  (14) 
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The disturbances are assumed to be small and two-dimensional such that the 
disturbance stream function f and temperature fluctuation t' are postulated as 

= ua$(7) eWZ-h,  (15) 

t' = L\TS(T) e ~ b x - h ,  (16) 

where by definition u' = Il.; and v' = - $;. The functions $(7) and s(7) represent the 
variation of the disturbance amplitudes across the boundary layer. In  general both 
â  and B may be complex. The recent trend in stability analysis is to calculate spatial 
amplification rates, whereupon Oi is taken to be complex and B is real. The real part 
of Oi is the wavenumber and the imaginary part is the spatial (in z) exponential 
amplification rate. Physical quantities correspond to the real part of complex 
functions . 

The forms for u, v, t andp in (14) are substituted into the complete two-dimensional 
time-dependent governing equations. After subtracting the base-flow quantities and 
applying the boundary-layer and parallel-flow assumptions, the x-momentum and 
y-momentum equations are combined into the vorticity equation to eliminate the 
pressure terms. Substituting (7),  (8 ) ,  (15) and (16), the following equations for the 
disturbance-amplitude functions $(q)  and s(7) are obtained : 

1 
iaG*Pr 

-$H = - ( s " - a 2 s ) .  

Here a and /3 are the non-dimensional complex wavenumber and frequency given by 

a = &a, p = Ba/U. 

The boundary conditions for a surface of large thermal capacity are 

$ ( O )  = $'(O) = s ( 0 )  = $(a) = $'(Oo) = S(c0) = 0. (19) 

Equations (17) and (18) are the usual OM-Sommerfeld equations for natural 
convection flow over a uniform-heat-flux surface. The difference here is that F and 
H in (9) and (10) are also functions of G*, through cM = eM(R*, G*).  Each physical 
flow circumstance, with given u, and q, is indicated by a value of R*. With q and 
R* given, each downstream location has a corresponding G*, which affects the 
stability of the flow directly as it appears in (17) and (18) and also as it affects F 
and H through cM. This is more clearly seen if (17) and (18) are written as 

($"-a2$) (I?,+ R*G*+F;-P /~) -$ (F;+  R*G*+F:) = - ( $ i V - 2 ~ 2 $ " + a 4 $ + s ' ) ,  

(20) 

1 
zaG* 

This formulation incorporates directly the non-similar base flow in terms of G*. This 
makes it possible to calculate the neutral curve and downstream amplification 
contours for a given flow circumstance, that is, a given R*. 

As discussed by Hieber & Gebhart (1971) and Mahajan & Gebhart (1978), the 



190 V.  P. Carey and B. Gebhart 

boundary-layer approximations employed in both the base-flow and stability equa- 
tions amount to neglecting terms in the governing equations of O(G*-') and smaller. 
Hence, the base-flow quantities in (30) and (21) are consistent with the boundary-layer 
assumptions used here. Equations (30) and (21) constitute a sixth-order linear 
ordinary differential equation for the disturbance-amplitude distributions $(q )  and 
~ ( 7 ) .  The solutions $(q )  and s(q)  are eigenfunctions for the eigenvalues a and /3. 

3. Numerical-integration procedure 
The sixth-order system of linear homogeneous differential equations (20) and (21) 

with boundary conditions (19) was solved using the method of Hieber & Gebhart 
(1971). Since the equations are linear the full solution is written as the sum of three 
linearly independent solutions 

$ = $1 + B 2 $ 2 +  B3$3r (22 a )  

s = s ,+B,s2+B3s3 .  (22b) 

Since this is an eigenvalue problem, the eignefunctions are determined up to a 
multiplicative constant. Here the magnitude of the disturbance functions has 
arbitrarily been set by taking the coefficient of $1 to  be 1 .  The three linearly 
independent integrals sl), ($2, s2) and ($3, s3) may be chosen so that their 
asymptotic solutions, to first order as q + 00, are 

$1 = eca7,  s1 = 0, (23a) 

$2 = epa27, s2 = 0, (23b) 

where 

$3 = ePa37, s3 = (a : -az ) {a : -a2+iG*( /3 -g ) }$ , '  

a, = [ a 2 - i G * ( / 3 - s ) ] ' ,  

(23 c) 

(23d) 

As in Hieber & Gebhart (1971), ($1, sl), ($2, sz) and ($3, s3) remain the inviscid, the 
viscous uncoupled and the viscous coupled integrals respectively. 

Equations (20) and (21) with boundary conditions (19) were solved as follows. For 
specified values of Pr, R*, /3 and G*, a complex value for a was guessed. Using (23) 
as starting values a t  some 7, the three integrals ($1, sl), (&, s2) and ($3, s3) were 
integrated separately across the boundary region using a fourth-order predictor- 
corrector method. From the values of the integrals a t  the wall, B, and B, were 
determined by the boundary conditions $(O) = 0 and $'(O) = 0. The remaining 
boundary condition, s(0)  = 0, is satisfied for the given G* and /3 only if a takes on 
a specfic value (eigenvalue). Equations for the a-derivatives were integrated together 
with each of the three integrals. This determined the a-derivatives of $, $' and s a t  
7 = 0. With $a(0), $L(O), sa(0) and the Cauchy-Riemann relations, an improved guess 
for a was obtained by linear extrapolation. The process was repeated until ls(0)I was 
sufficiently small, typically less than 

For convenience, computations were done for specific values of the frequency 
parameter B* rather than /3, where 

(24) B* = PG *t = 27Tf(gptq/k)-l. 
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Note that B* is proportional to physical frequency f ,  and independent of G* in any 
given flow, Hence constant frequency lines are horizontal on the (B*, G*)-plane. To 
obtain values of G* and B* on the neutral curve (ai = O),  the computational 
procedure described above was iterated for successive G*, with B* fixed, until 

Note that in (15) and (16) the amplitudes of $' and t' change as a result of two 
effects. The spatial growth due to the unstable nature of the flow is associated with 
the exponential terms in (15) and (16). $' and t' will grow if the real part of 2 is 
positive. In  addition, the base-flow quantities U ,  S and AT all grow with increasing 
x, which tends to increase the amplitudes of $' and t'. The disturbance growth rate 
associated with the exponential terms is therefore a measure of how fast the 
disturbance amplitude changes relative to the base-flow quantities. A ' neutrally 
damped ' disturbance is growing with downstream distance a t  the same rate as the 
base-flow quantities. 

As any given disturbance component of frequency f is convected downstream from 
a position corresponding t o  a value of G* on the neutral curve G&, to  an arbitrary 
location x = L corresponding to GZ, the ratio AL/AN of the disturbance amplitudes 
at  the two locations is given by 

lail G 10-5. 

where the integration is at constant B* on, for example, figure 1 where the neutral 
curves are shown as A = 0, for Pr = 0.733 with R* = 0 and 20. To determine the 
A-contours, for any given values of Pr and R*, the corresponding neutral curve is 
used as the starting point for any frequency B*. The selected value of B* is held 
constant while integrating downstream. For the chosen value of G*,  (24) is used to 
determine ~!3. The procedure described above is then used to determine the value of 
a corresponding to  G* and J!3. Marching along a t  constant B*, in small steps of G* 
(typically 5 ) ,  the accumulated amplification is computed using the simple trapezoidal 
rule to approximate the integral in ( 2 5 )  for A. This procedure was repeated for the 
number of physical frequency paths required to determine constant-A contours, as 
plotted in figure 1, for A = 1, 2, 4 and 6. 

The disturbance velocity and temperature distributions are written in terms of the 
solutions q5 and s from (15) and (16) as 

where 

u' = U' c o s l y -  

I" = u[a; + a;]: [ (#r)z  + (#i)z]:, 

ai #i 

a r  #r 
Bv = arctan - + arctan - , 

S. 
T' = AT[$; + sf]:. St = arctan 2. 

Sr 
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The subscripts r and i denote the real and imaginary parts, respectively. Since the 
disturbance equations are linear and homogeneous, the absolute magnitudes of the 
disturbances cannot be determined. The disturbance-amplitude distributions U', V' 
and T are therefore normalized by their maximum values across the boundary region. 
This yields 

(32) 
U' - - {(&)' + (&)')a 

u k a x  {(&I' + (&)'}>fax ' 

4. Numerical results 
Figure 1 compares the downstream amplification with G* for air, Pr = 0.733, a t  

R* = 0 and 20. Recall that R* = 0 is pure natural convection and R* = 20 corresponds 
to aiding mixed convection flow with Re, = +G*-i. Since the results are plotted in 
terms of B*, constant-frequency lines are horizontal. The magnitude of R* is 
restricted to less than 20 for Pr = 0733, so that the free-stream velocity u, does not 
exceed the maximum natural convection velocity at the nose of the neutral curve. 
This ensures the accuracy of the base-flow perturbation solution. 

Several important results are apparent in figure 1. First, the downstream ampli- 
fication is much less for R* = 20 than for R* = 0. I n  addition, far downstream, at  
G* near 600, the band of most rapidly amplified frequencies appears slightly higher 
for R* = 20 than for R* = 0. At lower G*, near G* = 350, the selectivity is less sharp 
for R* = 20 than for R* = 0. For R* = 20, lower-frequency disturbances, near 
B* = 0 8 ,  are most strongly amplified, whereas farther downstream, at G* = 600, 
frequencies near B* = 1.6 are amplified most rapidly. For R* = 0, the band of 
favoured frequencies varies less strongly with G*. However, the neutral curves for 
the two different conditions do not differ significantly. The shift in the constant-A 
curves indicates that an assisting free stream has a stabilizing effect. 

Mixed convection flow circumstances may also arise in which the forced-flow and 
buoyancy effects are opposed. Carey & Gebhart (1981) have pointed out a few weakly 
opposed flow circumstances for which the perturbation analysis, used here for the base 
flow, may be a reasonably accurate model. Hence, we have also applied the stability 
analysis to weakly opposed flows for which R* < 0. In  figure 2 the stability planes 
for R* = 0 and - 10 are compared, also for Pr = 0.733. It can be seen there that the 
effect on disturbance amplification is the opposite of that  for aiding flow. Although 
the neutral curve is again about the same, the amplified band is shifted downward. 
Also, the downstream amplification is much higher for R* = - 10. An opposed free 
stream has a sharply destabilizing effect on the flow. 

For Pr = 6.7, characteristic of water, the magnitude of R* is restricted to less than 
8, to ensure that the free-stream velocity is less than the peak natural convection 
velocity for conditions along the neutral curve. Figure 3 compares the constant- 
amplification curves obtained for R* = -4, 0 and 8 a t  Pr = 6.7. The free-stream 
velocity is seen to have very little effect on the disturbance-growth characteristics. 
The neutral curve and amplification curves show very little change. Flows in air 
apparently are much more sensitive to the presence of a free-stream velocity than 
flows in water. 
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FIQURE 1 .  Amplification-rate contours corresponding to R* = 0 (-) and 
20 (---) for Pr = 0733.  
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FIQURE 2. Amplification-rate contours corresponding to R* = 0 (-) and 
- 10 (---) for Pr = 0733. 
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B* 

FIGIJRE 3. Amplification-rate contours corresponding to R* = -4 (---), 0 (-) 
and 8 (----) for Pr = 6.7. 

5.  Experiments in air 
To assess the accuracy of the analysis presented in the previous section, experi- 

mental measurements were made in the mixed convection flow adjacent to a vertical 
uniform-heat-flux surface in air. The experimental system is shown in figure 4. The 
experiments were conducted in a cylindrical test section of inside diameter 33.7 ern 
and height 76.2 cm. The heated surface was formed by stretching a 15 cm wide piece 
of 0.0127 mm thick Inconel 600 foil in a special support fixture. The jaws a t  the top 
of the fixture were spring-loaded so that they exerted an upward force on the foil. 
The foil was looped around an aluminium support covered with plastic tape. This 
support resisted the upward pull of the jaws and thereby pulled the foil tight. A 
0.64 cm thick piece of foam insulation was inserted between the two sections of foil, 
so that a t  steady state all heat dissipated by the foil was transferred outward to the 
surrounding air. The resulting assembly formed a surface, heated on both sides, 15 cm 
wide, 40 cm high and 0-64 ern thick, with a front and back surface of the Inconel foil 
and an interior of foam insulation. The lower aluminium support provided a smooth 
leading-edge configuration. Passing electric current through the foil provided a 
uniform-heat-flux surface condition. 

Prior to the experiments, the surface was aligned vertically, with the leading edge 
horizontal, using a plumb line and level. Air flow was supplied to the test section by 
a line from a compressed-air storage tank. The storage tank was maintained at about 
7 atm pressure by a system which compressed and dehumidified the air. Air from the 
storage tank was sent through a pressure regulator, a critical orifice flowmeter and 
t'hen into the test section. The system had a peak flow capacity of about 0.7 m3/s 
at 1 atm pressure. This amounted to a peak mcan velocity of 7.5 cm/s in the test 
section. By maintaining critical flow conditions a t  the orifice in the orifice meter, the 
flow through the test section was a function only of the pressure upstream of the 
meter. The pressure there was held with kO.07 atm ( + 7  kPa) by the pressure 
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FIGURE 4. System used for mixed convection experiments. 

regulator. The flow through the test section was thereby held constant within 
- + 0.05 cm/s. Measurements indicated that the temperature of the air supplied to the 
test section did not vary by more than 0.05 O C  during a test. These tolerances could 
be held for as long as 45 minutes, despite cycling of the compressor to maintain the 
storage tank pressure. The air flow rate was also measured with the critical orifice 
meter, as a rough check of the hot-wire measurements of the mean flow in the test 
section. 

Large-pressure-drop baffles were inserted a t  the top and bottom of the test section 
to ensure uniform flow distribution over the test section. Hot-wire measurements 
across the test section, made before inserting the surface, indicated that the flow was 
uniform to within +0*10 cm/s. During the experiments, the variation of the core 
velocity with vertical location was found to be negligible. The usual acceleration of 
the core flow which occurs in the entrance of a pipe was not appreciable because 
acceleration of the fluid by buoyancy, near the surface, approximately compensates 
for the deceleration of fluid by shear in the boundary layer along the test-section wall. 
The support structure for the surface was designed to minimize drag, and the 
structural members were far away from the heated surface. 

A regulated power supply was used to provide electrical power to the foil During 
the experiment, the voltage was measured across the foil using a Hewlett-Packard 
3465B digital multimeter. The voltage was also measured across a Leeds & Northrup 
0.01 0, 100 A standard shunt in series with the foil, to determine the foil current. 
The foil current, and the voltage drop, were used to calculate the heat flux from the 
surface. 

Velocity measurements were made using a Disa 55M01 constant-temperature 
hot-wire anemometer with a Disa 55P14 miniature probe. The output from the 
anemometer was measured with a Hewlett-Packard 3.1558 digital voltmeter. The 
hot-wire probe was L-shaped so that the wire was upstream of the probe support. 
This minimized probe-support interference. The probe was calibrated in air using the 
test rig of Shaukatullah (1977). This is a modification of the earlier apparatus of Dring 
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t) 

FIQURE 5. Measured mean-velocity profiles in mixed convection flow along a vertical uniform- 
heat-flux surface in air. The values of (R*,  G*, eM) and the corresponding symbols for the 
experimental data are (15,319,020) (a); (20, 351, 024)  (A); (22, 350,027) (m). Also shown are 
the calculated laminar profiles for eM = 020  (---) and 0.30 (---). 

& Gebhart (1969). The probe was calibrated at an overheat ratio of 1.6 for velocities 
up to  40 cm/s. The method described by Mahajan (1977) was used to correct the 
hot-wire output for the effect of varying ambient temperature. A discussion of this 
correction method may also be found in Carey (1981). 

The boundary-layer temperature measurements were made using a 00254 mm 
copper-constantan thermocouple. The two thermocouple leads were horizontal and 
parallel to  the foil for about 0.8 cm on each side of the junction. In  this arrangement, 
the wire lay essentially along an  isotherm in the thermal layer, reducing the 
conduction loss in the leads. These leads then passed through a pair of 1.0 mm hollow 
glass tubes which were attached to a support outside the boundary region. This 
support also held the hot-wire probe and the surface probe. The latter, a 1.5 mm 
copper rod, was used to  locate the surface. The foil location was determined by 
connecting the surface probe through a resistance meter to the foil. The circuit was 
completed when the probe contacted the foil, causing the resistance reading to  drop 
from an open circuit to some finite value. 

The relative positions of the thermocouple and hot-wire sensors, with respect to 
this surface probe, were determined from an enlarged photograph of the assembly. 
The hot-wire sensor, thermocouple junction and surface probe were in the same 
horizontal plane. The ambient air temperature in the tank was measured using a 
00127 cm copper-constantan thermocouple. An ice bath was used as a reference for 
both thermocouples. The output from the thermocouples was measured using a 
HewlettPackard 3465B multimeter as a voltmeter. 

The probe array was remotely traversed normal to the foil, in the boundary layer, 
using a Disa 55H01 traversing mechanism. This was driven by a Disa 55C01 stepper 
motor, which was remotely controlled by a Disa 55B01 sweep drive unit. The output 
level corresponding to any given probe position was displayed with high accuracy 
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on the three-digit mechanical counter of the sweep drive unit. The probe could be 
accurately moved in steps of 0.203 mm. The distance of the probe from the leading 
edge was measured accurately before putting the assembly in the tank. 

The thermocouple leads, the coaxial hot-wire cable and all the other electrical leads 
were taken out of the test section through sealed fittings in the side and top of the 
tank. 

After turning on the air supply and applying the foil current, the flow was allowed 
about 2 min to  reach steady state, for each test. Thermocouple and hot-wire readings 
were then taken at a number of points across the boundary layer. All measurements 
were taken a t  a single downstream location 31.4 cm above the lower edge of the 
surface. This was about 9 em below the upper edge. For this apparatus this was the 
farthest downstream location at which data could be taken without interference from 
the trailing edge. The maximum downstream distance was chosen to provide as much 
distance as possible for disturbances to amplify in the flow. This maximized the 
relative accuracy of the disturbance-amplitude measurements, given the finite 
resolution of the probes and the size of the apparatus. 

In  each experiment, the convection heat flux was determined from the temperature 
measurements in the flow close to the surface, and from the power input to the foil. 
As described in Carey (1981), the temperature measurements were used to correct 
for the weak effect of thermal radiation from the surface. 

For the apparatus described above, i t  was found that, for G* values above about 
320 and at moderate flow rates, very small disturbances present in the free-stream 
flow were amplified in the boundary layer. The resulting outputs from the hot-wire 
and thermocouple probes were recorded using a Beckman analog chart recorder and 
a Hewlett-Packard 34558 digital voltmeter. The analog outputs indicated that the 
disturbances were almost purely sinusoidal. From the recorded output the disturbance 
frequencies and the profiles of disturbance and mean quantities across the boundary 
region, were determined. 

Figure 5 shows the measured mean-velocity profiles for (R*, G*, E ~ )  = (15, 319, 
020).  (20,351,0*24) and (22,350,0*27). The estimated uncertainty in the data is 4 yo 
of the peak velocity for the velocity measurements and &- 2 % of the peak temperature 
for the temperature measurements. Also shown in figure 5 are the calculated laminar 
profiles for eM = 0 2 0  and 030 .  These measurements show no significant deviation 
from the calculated laminar variation. Figure 6 compares measured mean and 
calculated temperature profiles, again with excellent agreement. As assumed in the 
stability analysis, at this early, and linear, stage of the transition process, the mean 
flow deviates very little from steady laminar flow behaviour. 

Figures 7 and 8 show, as points, the measured disturbance velocity and temperature 
data respectively for (R*, G*, eM) = (20, 351, 0.24) and (22, 350,0*27). The data 
shown in these figures are the largest oscillatory disturbances observed a t  each 
location during about 60 s of recorded thermocouple and hot-wire output. Hence, 
they represent the most highly amplified disturbances in the flow. The 60 s interval 
was chosen as a consistent means of comparison. Results obtained for successive 60 s 
intervals, and in repeated tests, were consistent to within about 10 "1;. The data in 
figures 7 and 8 are therefore believed to be representative for these flows. The 
disturbance-velocity data was obtained by correcting the hot-wire output for 
temperature effects using the method of Mahajan (1977). 

Also shown in figures 7 and 8 are the computed disturbance and phase profiles for 
B* = 0.8 and 1.6 for (R*, G*, eM) = (20, 350, 024) .  The comparison of these data with 
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FIGURE 6. Measured mean-temperature profiles in mixed convection flow along a vertical 
uniform-heat-flux surface in air. The values of (R*, G*, eM) and the corresponding symbols for the 
experimental data are (15, 319, 020) (a); (20, 351, 024) (A); (22, 350, 027) (a). Also shown 
are the calculated laminar profiles for eM = 0 (--) and 0.30 (---). 

FIGURE 7 .  Measured velocity-disturbance profiles for (R*, G*, eM) = (20, 351,024) (A) and 
(22, 350,027) (a). Also shown are the theoretical profiles for (R*, G*, eM) = (20, 350,024) for 
B* = 0 8  (---) and 1.6 (-). 
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FIGURE 8. Measured temperature-disturbance profiles for (R*, G*, eM) = (20, 351, 0.24) (A) and 
(22, 350,027) (B). Also shown are the theoretical profiles for (R*, Q*, eM) = (20, 350, 024) for 
B* = 0 8  (---) and 1.6 (-). 

U'/Ukax is appropriate since the analysis predicts that  Jv'JIJu'J is small over much 
of the boundary layer. The curves for B* = 0.8 and 1.6 are shown because they span 
the range of most highly amplified frequencies a t  G* = 350, R* = 20 (see figure 1 ) .  
It is seen in figures 7 and 8 that the data agree more closely with the distributions 
for B* = 0.8. This is not surprising since these data represent the largest disturbance 
seen a t  each transverse (y) location. As seen in figure 1 ,  the most highly amplified 
disturbances (largest A )  a t  G* = 350, R* = 20 occur near B* = 0.8. At these moderate 
values of G*, for R* = 20, lower frequencies are more highly amplified than the higher 
frequencies that eventually dominate farther downstream. 

The measured frequencies for a range of R* and G* are shown in figure 9. For each 
of the experiments, a range of frequencies was found in the analog data. The two 
frequencies which were found most often in the analog data for each condition are 
plotted in figure 9 along with the stability planes for R* = 0 and 20. It can be seen 
that the theoretical curves predict that, for R* near 20 and G* = 350, disturbances 
with frequencies corresponding to B* between 0 8  to 1.6 will be most highly amplified. 
The frequencies encountered most often in the experimental data do correspond to 
values of B* in this range, as seen in figure 9. The experimental observations are 
therefore consistent with the selective amplification predicted by the analysis. 

6. Conclusions 
Linear stability analysis has been applied to mixed convection flow adjacent to a 

vertical uniform-heat-flux surface in a weak uniform free stream. This new formulation 
makes it possible to calculate the neutral curve and constant-amplification curves 
for a given physical flow circumstance, i.e. fluid, free-&ream velocity and surface heat 
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FIQURE 9. Characteristic frequencies observed in mixed convection flow along a vertical uniform- 
heat-flux surface in air. The experimental conditions are (R*.  G*, cM) = (15, 319, 020) (a); 
(22, 350, 027) (D); (20, 351, 024) (A); (16, 380, 0.19) (+). Also shown are the calculated ampli- 
fication rate contours for R* = 0 (+-) and 20 (---). 

flux. I n  gases it was found that the disturbance amplification rates in mixed 
convection flow differed strongly from those in purely natural convection flow. The 
amplification rates are lower with an assisting free stream and higher with an opposed 
free stream. Hence an  aiding free stream has a stabilizing effect for gases, while an 
opposed free stream tends to destabilize the flow. An aiding free-stream flow causes 
an upward shift in the band of favoured frequencies for gases. The opposite effect 
was found for an opposed free-stream flow. For Pr = 0-733, from R* = 0 to 20, the 
value of B* corresponding to the centre of the band of favoured frequencies changed 
from about 1.3 to 1-6. For R* = -10, the favoured band centre shifted downward 
to about 1.1. I n  water, the effect of an aiding or opposed free stream is almost 
negligible. However, in both air and water, the flow retained the preferential 
amplification of a narrow band of frequencies which is characteristic of purely 
free-convection flow. 

Experimental measurements in aiding mixed convection flows in air confirm the 
behaviour calculated from linear stability analysis. In the early stages of disturbance 
amplification, the measured mean velocity and temperature profiles deviate very 
little from those predicted for laminar flow. The measured disturbance-amplitude 
distributions agreed well with those predicted by the analysis. They appear to confirm 
the predicted preferential amplification of lower frequencies, near B* = 08, a t  
G* = 350, for R* = 20. The observed frequencies in the hot-wire and thermocouple 
output are all near the band of preferred frequencies predicted by the analysis. On 
the whole, the experimental results imply that, in the early stages of disturbance 
amplification, linear stability theory provides reasonably accurate information about 
disturbance behaviour in mixed convection flows in air. 
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